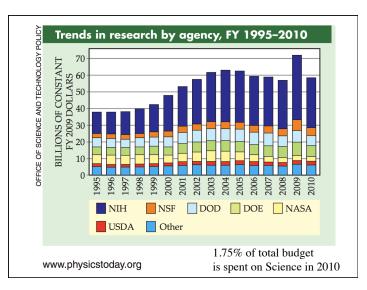
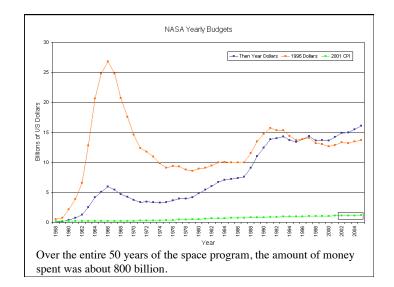
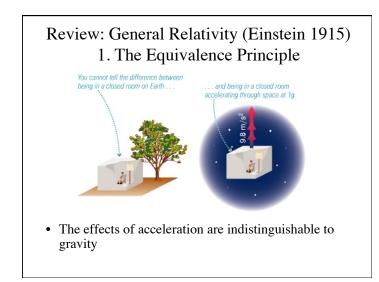
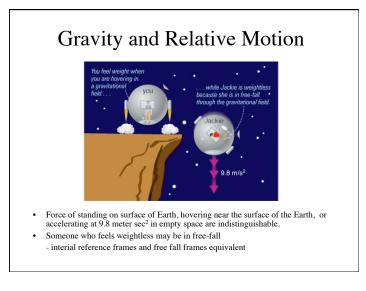

What Fraction of National Budget Goes into NASA?

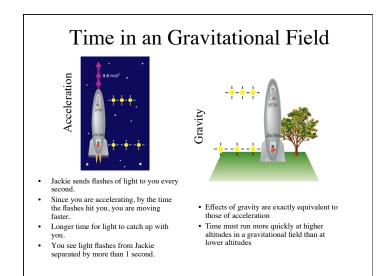

In a poll of the public, the average guess was that approximately 24% of the national budget went to NASA.

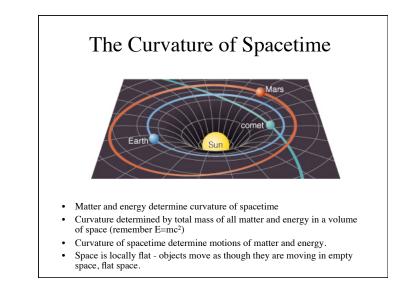
The answer is less 0.5 %

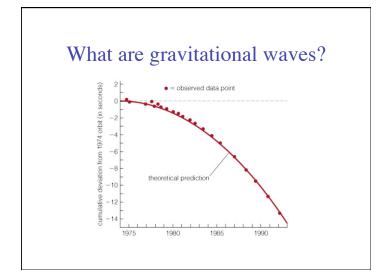


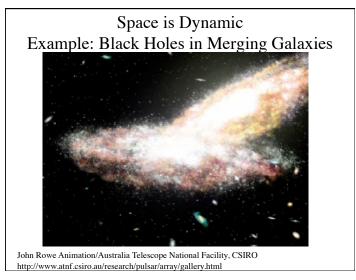


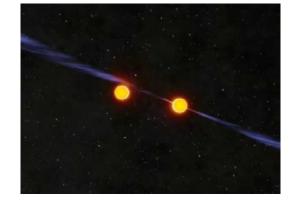

	Budget Authority, \$ in million								
NACA	By Appropriation Account By Theme	FY 2008 Actuals	FY 2009 Enacted	Recovery Act	FY 2010	FY 2011	FY 2012	FY 2013	FY 2014
NASA	Science	4,733.2	4,503.0	400.0	4,477.2	4,747.4	4,890.9	5,069.0	5,185.4
	Earth Science	1,237.4	1,379.6	325.0	1,405.0	1,500.0	1,550.0	1,600.0	1,650.0
budget	Planetary Science	1,312.6	1,325.6		1,346.2	1,500.6	1,577.7	1,600.0	1,633.2
Duuget	Astrophysics	1,395.6	1,206.2	75.0	1,120.9	1,074.1	1,042.7	1,126.3	1,139.6
_	Heliophysics	787.6	591.6		605.0	672.6	720.5	742.7	762.6
	Aeronautics	511.4	500.0	150.0	507.0	514.0	521.0	529.0	536.0
	Exploration	3,299.4	3,505.5	400.0	3,963.1*	6,076.6*	6,028.5*	5,966.5*	6,195.3*
0.4% of	Constellation Systems	2675.9	3033.2	400.0	3505.4	5543.3	5472.0	5407.6	5602.6
0.4 /0 01	Advanced Capabilities	623.5	472.3		457.7	533.3	556.5	558.9	592.7
C 1 1	Space Operations	5,427.2	5,764.7	0.0	6,175.6	3,663.8	3,485.3	3,318.6	3,154.8
federal	Space Shuttle	3,295.4	2,981.7		3.157.1	382.8	87.8	0.0	0.0
reactai	International Space Station	1,685.5	2,060.2		2,267.0	2,548.2	2,651.6	2,568.9	2,405.9
hudgat in	Space and Flight Support	446.2	722.8		751.5	732.7	745.9	749.7	748.9
budget in	Education	146.8	169.2	0.0	126.1	123.8	123.8	123.8	125.5
	Education	146.8	169.2		126.1	123.8	123.8	123.8	125.5
2009	Cross-Agency Support	3,251.4	3,306.4	50.0	3,400.6	3,468.4	3,525.7	3,561.4	3,621.4
2007	Center Management and Operations	2,011.7	2,024.0		2,084.0	2,119.2	2,142.5	2,166.1	2,189.9
	Agency Management and Operations	834.1	921.2		961.2	956.9	964.5	972.3	981.5
	Institutional Investments	325.5	293.7	50.0	355.4	392.3	418.7	423.0	450.0
	Congressionally Directed Items	80.0	67.5		0.0	0.0	0.0	0.0	0.0
	Inspector General	32.6	33.6	2.0	36.4	37.0	37.8	38.7	39.6
	NASA FY 2010	17,401.9	17,782.4	1,002.0	18,686.0	18,631.0	18,613.0	18,607.0	18,858.0
	Year to Year Change		2.2%		5.1%	-0.3%	-0.1%	0.0%	1.3%

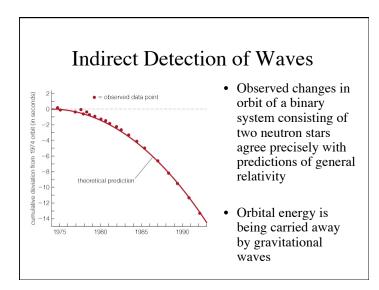



National S 7 billion ((ATHEMATICAL AND PHY	0.2 9	% of	US	bud		
Mathema	atical and P	hysical Sci		ding		
	(D UIIII)	FY 2009		Change Over		
	FY 2008	Current	FY 2009 ARRA	FY 2010		
	Actual	Plan	Estimate	Request	Amount	Percer
Astronomical Sciences	\$217.90	\$228.62	\$85.80	\$250.81	\$22.19	9.7%
Chemistry	194.62	211.35	103.00	238.60	27.25	12.99
Materials Research	262.55	282.13	106.90	308.97	26.84	9.5%
Mathematical Sciences	211.75	226.18	98.00	246.41	20.23	8.99
Physics	251.64	274.47	96.30	296.08	21.61	7.9%
Office of Multidisciplinary Activities	32.67	33.21	-	39.13	5.92	17.8%
Total, MPS	\$1,171.13	\$1,255.96	\$490.00	\$1,380.00	\$124.04	9.9%
Major Components:						
Research and Education Grants	773.16	845.24	403.45	934.55	89.31	10.69
Instrumentation	52.25	47.71	25.95	69.68	21.97	46.09
Centers Programs	97.37	114.95	-	114.27	-0.68	-0.69
Facilities Operation & Maintenance	248.35	248.24	60.60	261.50	13.26	5.39



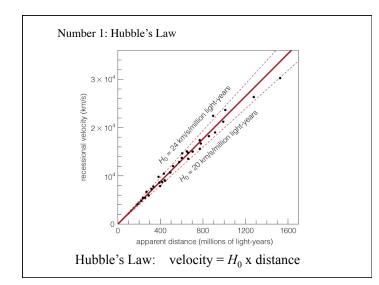


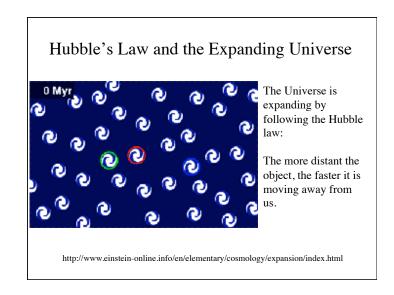


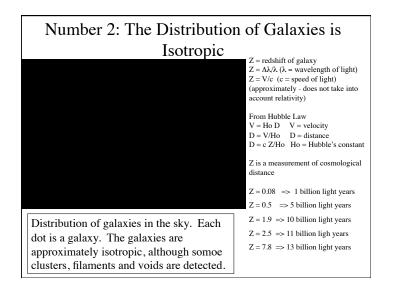

Gravitational Waves

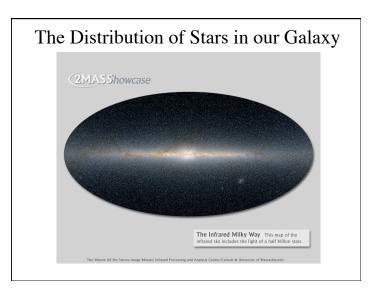
- General relativity predicts that movements of a massive object can produce gravitational waves just as movements of a charged particle produce light waves
- Gravitational waves have not yet been directly detected

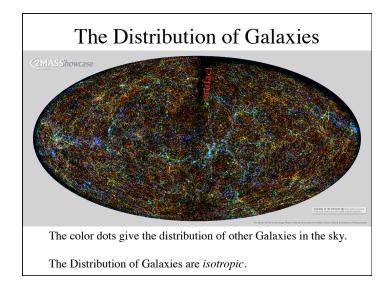
Binary Pulsars Emit Gravity Waves


John Rowe Animation/Australia Telescope National Facility, CSIRO http://www.atnf.csiro.au/research/pulsar/array/gallery.html




Cosmology: the study of the universe as a whole


Let's Now Apply General Relativity to cosmology

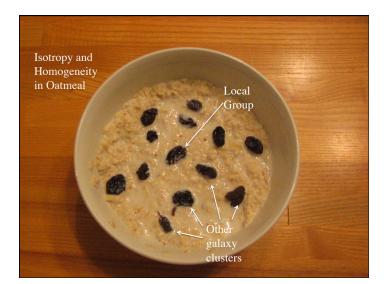

We know two important things about the universe as a whole.

The Universe is Isotropic and Homogenous

Isotropic – it looks the same in all directions (the distribution of galaxies is basically the same any direction in the sky).

Homogenous – it looks the same from any point in the Universe (i.e. the universe looks basically the same to us and aliens in another solar system in a very distant galaxy).

We know that the universe does not look exactly the same in every direction:


We see the disk of our galaxy (i.e. the Milky Way)

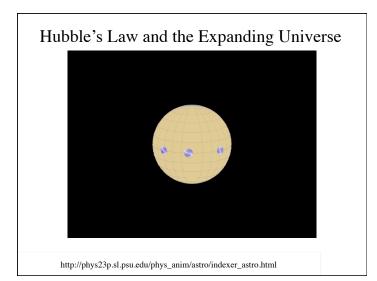
We know that the universe doesn't look exactly the same from every galaxy:

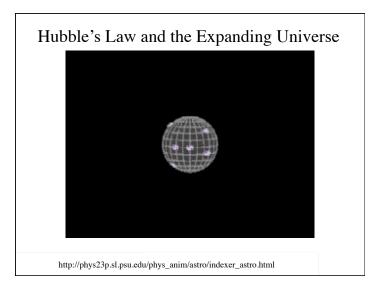
For example, the the universe may look very different to an alien race in the middle of a galaxy cluster.

How do we think about this?

and homogeneous

They assumed (as an approximation) that the universe is isotropic


- 1. Isotropic the distribution of stars and galaxies looks the same in
- every direction to every observer
 Homogeneous the distribution of stars and galaxies is relatively smooth and constant (i.e no *big* lumps, just little ones like *galaxies*)


Solving Einstein's equations, they predicted in 1927 that Universe is expanding!

Einstein did not believe the Universe was expanding, and so he introduced a new "force" in his equation: the cosmological constant. This new force would balance gravity so that the Universe could be static (no expansion).

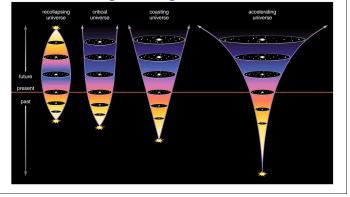
In 1929, Edwin Hubble showed that the universe was indeed expanding.

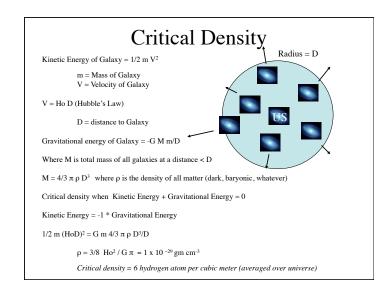
Einstein later referred to the cosmological constant as his greatest blunder.

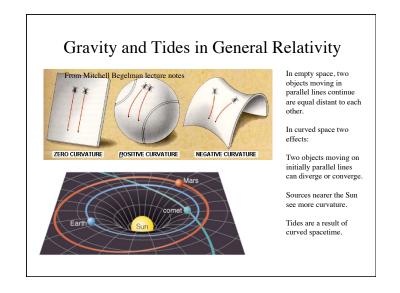
Is Everything in the Universe is Expanding?

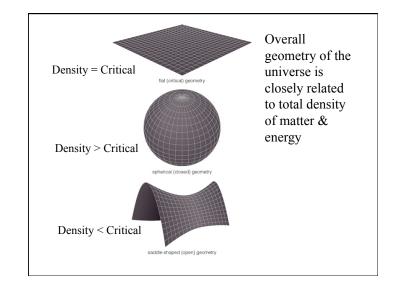
Hubble's law velocity = $71 \text{ km s}^{-1}/\text{Megaparsec x Distance}$

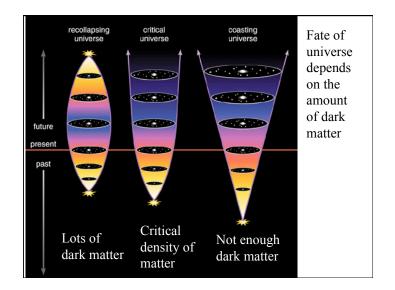
(1 megaparsec = 1 million parsecs)


Distance from Sun to Pluto = 40 AU = 6 x 10^{14} cm = 2 x 10^{-10} Megaparsec

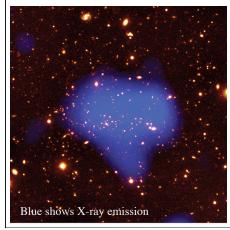

Velocity = 71 km s⁻¹ / Megaparsec x 2 x 10^{-10}


Velocity = $1.4 \text{ x } 10^{-8} \text{ km s}^{-1} = 0.44 \text{ km per year}$


Thus. Pluto would drift away from the Sun. However, *in reality*, the gravity of the Sun overcomes the Hubble expansion and keeps Pluto and the other planets from drifting away as the Universe expands.


Will the universe continue expanding forever?

Fire and Ice

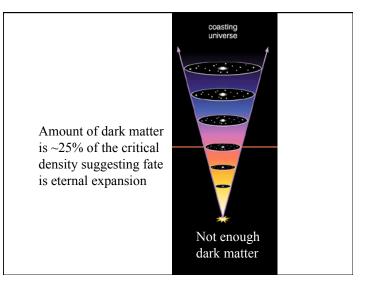

by Robert Frost.

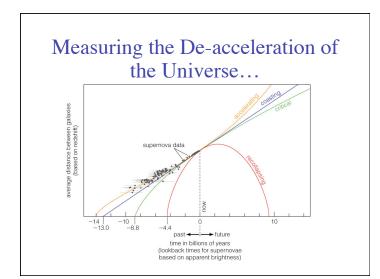
Some say the world will end in fire; Some say in ice. From what I've tasted of desire I hold with those who favor fire. But if it had to perish twice, I think I know enough of hate to know that for destruction ice is also great and would suffice.

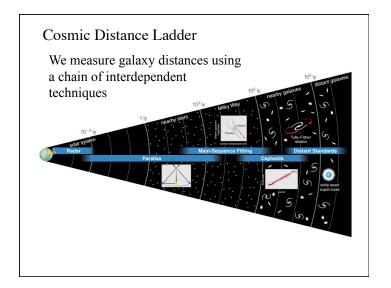
Two methods for determining the critical density and the future of the universe:

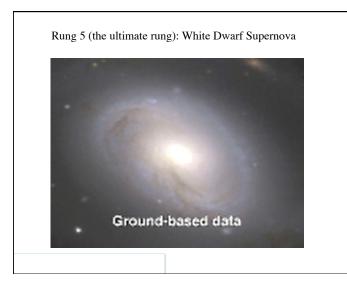
- 1. Count up all the mass and see how it compares to the critical density.
- 2. Measure the de-acceleration of the universe

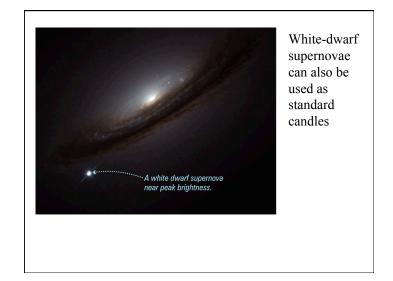
Counting up the mass: Can Dark Matter Stop the Expansion of the Universe?

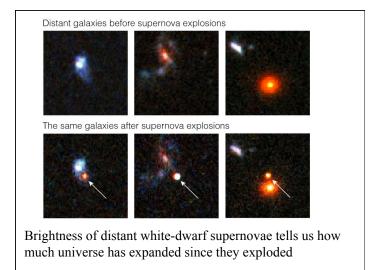

From clusters of galaxies, we know that about 15% of the gas is Baryonic (made out of normal protons, neutrons, electrons)

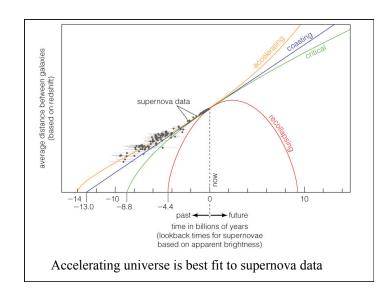

2% stars 13% hot gas

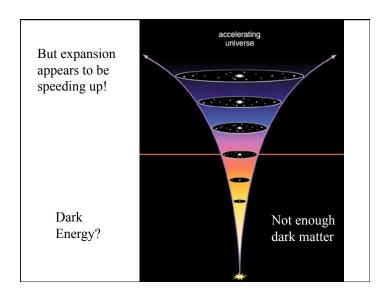

The remainder has to be something "else":

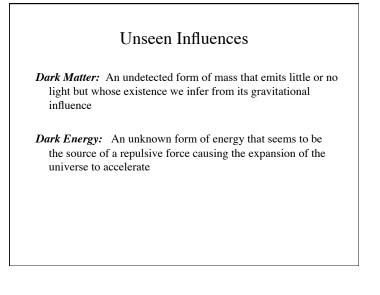

85% dark matter

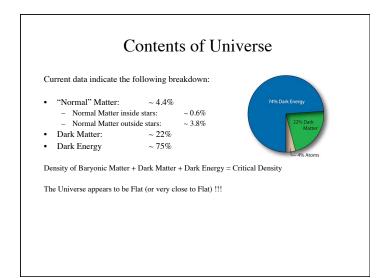

But the total density is still only 25% that of the critical density!!!

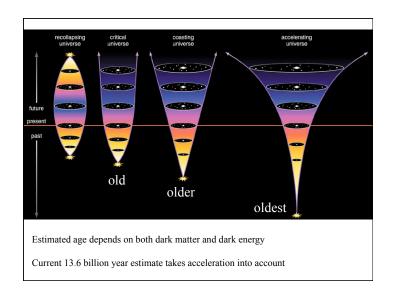




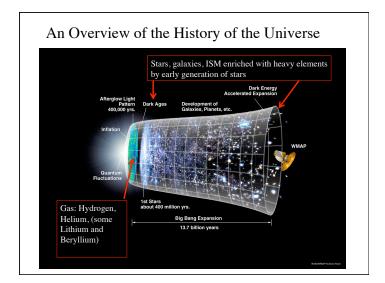


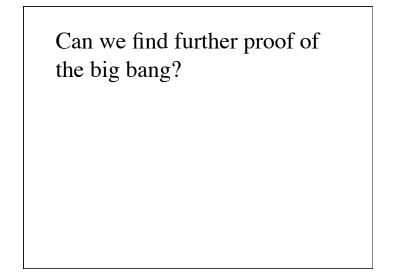


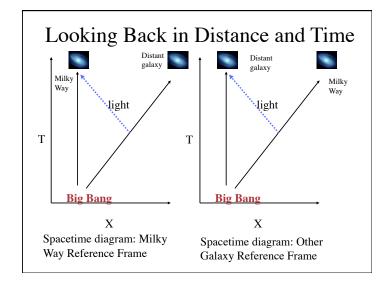


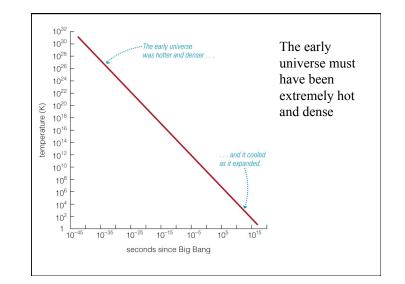


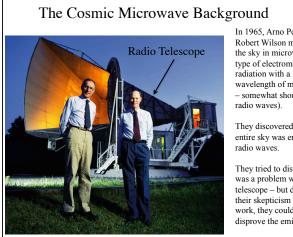
Thought Question

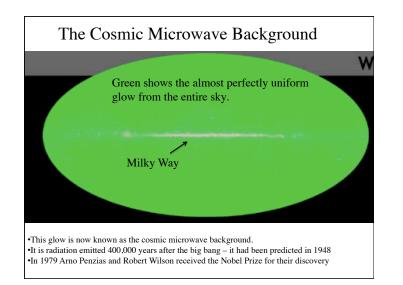

Suppose that the universe has more dark matter than we think there is today – how would that change the age we estimate from the expansion rate ?


- A. Estimated age would be larger
- B. Estimated age would be the same
- C. Estimated age would be smaller


Thought Question


Suppose that the universe has more dark matter than we think there is today – how would that change the age we estimate from the expansion rate ?


- A. Estimated age would be larger
- B. Estimated age would be the same
- C. Estimated age would be smaller



In 1965, Arno Penzias and Robert Wilson mapped the sky in microwave (a type of electromagnetic wavelength of millimeters - somewhat shorter than

They discovered that the entire sky was emitting

They tried to discover if it was a problem with their telescope - but despite all their skepticism and hard work, they could not disprove the emission.

Stop and Think

We started by measuring the positions, velocities and distances of galaxies.

From this:

- We discovered that space was expanding (needed Relativity to understand this).
- We measured the age of the universe.
- We discovered that what we are made out of is only 4% of the matter/energy of the universe.

What have we learned? · How does the curvature of the Universe depend on the density of matter? - Positive Curvature if density high enough to stop universe from expanding - Negative Curvature if density is to low to stop universe from expanding - Flat if universe is critical (stop expanding as time approaches infinity • Will the universe continue expanding forever? - Current measurements indicate that there is not enough dark matter to prevent the universe from expanding forever Is the expansion of the universe accelerating? - An accelerating universe is the best explanation for the distances we measure when using white dwarf supernovae as standard candles • What are the main ingredients of the Universe? - 4% "normal" baryonic matter (everything we know of in our common experience) - 22% dark matter (neutrinos and WIMPS) - 74% dark energy 96% of the Universe consists of "exotic" dark matter and dark energy - what these are is not understood! In reality, the matter from which we are made is "exotic" and rare.