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The Kelvin-Helmholtz Time

The Kelvin-Helmhotz time, or tKH , is simply the cooling time for a pressure supported

(i.e. in hydrostatic equilibrium), optically thick object. In other words, a pre-main sequence

star. This is given by the potential energy over the luminosity.

tKH =
GM2

RL
(1)

Since luminosity is a strong function of mass, tKH declines with increasing mass. For a high

mass object, let’s take M = 10 M⊙, R = 3 R⊙ and L = 104 L⊙, then tKH = 10,000 years.

On the other hand, for a low mass object, M = 1 M⊙, R = 4 R⊙ and L = 15 L⊙, then tKH

= 1.5 million years

Pressure Supported Core for a Massive Star

Consider a dense core supported by pressure. This core must satisfy the equation:

GM

R
= c2

s (2)

For T = 20 K, cs = 0.24 km s−1. In this case, for M = 1 M⊙, we get an R = 0.07 pc: this

is the size of observed dense cores. On the other hand, if M = 10 M⊙, R = 0.76 pc. These

objects don’t seem to exist. There are large, parsec size structures, but they are turbulent,

more than 10 M⊙ im mass, and usally filled with a cluster of low mass stars. On suggestion

is that we use the turbulent linewidth. In this case we replace cs with σturb = vNT /2
√

2ln(2).

If we set σturb to 1 km s−1, then R = 0.05 pc, which is much more acceptable. However,

it is not clear that turbulence can act as a 3D, isotropic pressure and stabilize the core.

Furthermore, the turbulent energy is quickly dissipated in shocks. Thus, any such turbulent

cores are probably not stable.
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The Eddington Luminosity

The Eddington Luminosity is the luminosity at which the radiation pressure exceeds

the force of gravity. It is typically calculated for ionized gas where the primary opacity is

Thompson scattering. Remember that the momentum carried by a photon is hν/c. For

a given flux, F , the radiation pressure is then F/c. (Here we assume that the radiation

is coming from a single direction and the surface is perpendicular to that direction. If the

radiation is isotropic, and the flux is the radiation passing through the surface in one direction

only since the net flux would be zero, then the pressure is given by 4F/3c). Accordingly, the

radiation pressure on a parcel of gas by a source of luminosity L and radius R is given by

the equation:

Prad =
χρ

c

L

4πR2
dr (3)

where χ is the sum of the absorption cross section and scattering cross section per mass and

dr is the thickness of the gas layer. Note that the force absorbed goes up with the thickness

of the absorbing slab, this says that the pressure goes up with the optical depth of the slab

(χρdr). If we assume the gas is purely ionized Hydrogen, then the main source of opacity is

Thomson scattering by electrons. Now, consider a parcel of gas in a stellar atmosphere with

an area A and thickness dr. The force by photons per area is given by:

dPrad

dr
= −

χρ

c

L

4πR2
= −

σT ρ

mHc

L

4πR2
(4)

Here we have divided by dr to give dPrad/dr. Since the force is outward, dP/dr is negative.

If there is a balance between gravity and radiation pressure, then you essentially get the

equation for Hydrostatic equilibrium. The luminosity that gives you this balance is the

Eddington luminosity.

dPrad

dr
= −

σT ρ

mHc

L

4πR2
= −

GMρ

R2
(5)

The Eddington luminosity can then be written as:

Ledd =
4πGMmHc

σT

(6)

This can also be stated as a luminosity to mass ratio:
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Ledd

M
=

4πGmHc

σT

= 3.2 × 104
L⊙

M⊙

(7)

When this ratio is exceeded, the radiation pressure exceeds gravity. Note that it is indepen-

dent of radius, since both the gravity and the photon flux decrease by 1/R2.
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”Eddington Luminosity” Calculation for Infall onto a Massive Star

Now consider an infalling envelope for a massive star. In this case, the primary source of

opacity is the absorption and scattering of photons by dust grains. Assume that the photon

momentum transferred to the dust grains by the absorption or scattering of a photon are

subsequently transferred to the gas. Also, assume the luminosity is the combination of

intrinsic luminosity of the central protostars (which may be on the main sequence) plus

accretion luminosity. For infall to occur, gravity has to exceed radiation pressure:

L

M
=

L⋆ + Lacc

M
≤

4πGc

χeff

(8)

There is a significant difference here from the standard Eddington luminosity discussed in

the previous section. The Thomson scattering opacity is independent of the frequency of

light, but the opacity of the grains depends on the wavelength of the radiation field. Thus,

as an opacity we need to use is weighted by the radiation field:

χeff =

∫

χνFνdν
∫

Fνdν
=

∫

χνBν(Trad)dν
∫

Bν(Trad)dν
(9)

We can assume the radiation field is described by the Planck equation. What is the tem-

perature of the radiation field? Consider an infalling envelope. As the gas and dust falls

inward, the temperature increases until, at a temperature between 1000 and 2000 K, the

grains sublimate. This is called the dust destruction radius. At this point, the opacity of the

gas drops. Thus, the light of star travels freely until it reaches the dust destruction radius

and is radiated. We assume all the light is absorbed and re-emitted at the dust destruc-

tion radius. That temperature is approximately the dust sublimation temperature. Thus

Trad ∼ 2000 K, much lower than that of the stellar photosphere. This reduces the effect of

the radiation pressure significantly. As shown in the lecture, this may allow infall to occur,

depending on the assumed dust opacities.
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The inner boundary: Ram Pressure vs. Radiation Pressure

We can increase the L/M ratio at which infall can occur by absorbing the photons

at the dust sublimation radius and re-emitting the luminosity at longer wavelengths. To

do this, we need to bring gas and dust down to the sublimation radius. Remember that

the dust at the sublimation radius is directly exposed to the radiation from the star, and

thus the photon pressure will exceed gravity for this dust. Fortunately, that dusty gas

has the additional pressure of all the material falling in from larger radius. Thus, at the

dust sublimation radius, we must consider the balance of ram pressure of a gas with number

density n, bulk velocity v and average particle mass µmH . Consider the momentum absorbed

by a surface, per unit area. The rate of particles hitting the surface is (assuming the velocity

is perpendicular to the surface):

R = nv (10)

If each particle has an average momentum µmHv, then the rate of momentum being absorbed

by the surface per area is:

Pram = µmHvnv = ρv2

ff (11)

where vff is the free fall velocity. For the infalling gas to move inward to the dust destruction

radius, the ram pressure must exceed the radiation pressure up to the dust destruction radius

(at which point the gas is no longer opaque):

ρv2

ff >
L

4πR2c
(12)

We can write the infall rate as Ṁ = ρv4πR2, hence

Ṁv >
L

c
=

L⋆ + GMṀ/R

c
(13)
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Quenched HII Regions

The young hot stars will also produce a strong UV field capable of ionizing hydrogen.

Why don’t we see an HII region? Perhaps the density is high enough that the Stromgren

sphere is constrained to be near the star. Imagine that the star is producing a certain number

of Lyman-continuum photons per seconds Nlyc. We use the equation for a Stromgren sphere

(modified into a Stromgren shell):

Nlyc = 4πr2drn2β (14)

where n is the density of electrons or ions (the both are approximately equally) and n2β

is the recombination rate per unit volume. We can relate Ṁ to n(r) through (Walmsley

RMxAC 1995):

Ṁ = 4πmHn(r)vffr
2 (15)

If we solve for density we get:

n =
√

Nlyc/β4πr3 (16)

where we have set dr ≈ r. Plugging this value of n into the equation for Ṁ and setting

vff =
√

GM/r, we get:

Ṁ = (4πm2

HNlycGM⋆m
2

Hβ−1)0.5 (17)

Accretion Through HII Regions

If escape velocity exceeds the sound speed in ionized gas, we can get a gravitationally

bound HII region. In such a region, infall can occur through the HII region. The sound

speed of ionized gas, which has a TK ∼ 104 K, is 10 km s−1. For this occur, the radius of

the ionized region should be less than the HII radius

RHII =
2GM

c2

II

(18)

which for a 20 solar mass star is 400 AU.


