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Lecture 21

Review: calculation of mean atomic weight of an ionized gas (µ)

Given a mass fraction Xi (or abundance) for an ionic (or atomic) species with atomic weight

Ai, we can can calculate µ by:

1

µ(ion)
=

∑ Xi

Ai
(1)

For the electrons:

1

µ(e−)
=

∑ ZiXi

Ai

(2)

where Zi is the charge of the ion. Finally, the total value of µ is:

1

µ
=

1

µ(e−)
+

1

µ(ion)
=

∑ ZiXi

Ai
+

Xi

Ai
(3)

Multiplying 1/µ by ρ/mH gives the number of particles needed for the ideal gas law. We

use X for the mass fraction (abundance) of Hydrogen, Y for Helium, Z for everything else.

We will consider an envelope, with normal ”solar” abundances, and a core where Hydrogen

has been depleted and the abundance is dominated by Helium. For ions:

1

µ(ion)
= X +

1

4
Y +

1 − X − Y

< A >
≈

1

4
(1 + 3X) (4)

We now approximate Y = 1−X and Z = 0. Given X = 0.707 and Y = 0.274 and < A >∼ 20

then µ(ion) = 1.29. On the other hand, if Y ∼ 1 then µ(ion) = 4. For electrons:

1

µ(e−)
= X +

1

2
Y + (1 − X − Y )

< Z >

< A >
≈ X +

1

2
Y =

1

2
(1 + X) (5)

For a normal (envelope) abundance, µ(e−) = 1.17, for X = 0 (in the Hydrogen depleted

core), µ(e−) = 2. The total value of µ is given by.

1

µ
=

1

µ(e−)
+

1

µ(ion)
≈

3 + 5x

4
(6)
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For an ionized gas with normal interstellar abundances, µenv = 0.6 . If we convert the

Hydrogen into Helium, then µcore = 1.33, doubling the mean atomic weight per particle.

The Effect of Hydrogen Burning

In the evolution of stars, the changing of the mean atomic weight of the gas particles by

nuclear fusion can have a dramatic effect on the pressure, hence driving stellar evolution.

Consider the ideal gas law:

P =
ρ

µmH
kT (7)

When we convert hydrogen into He, µ doubles, from 0.6 to 1.3. Thus, for the same

temperature, the pressure drops by a factor of two.

The Main Sequence Phase

Is the main sequence phase characterized by constant energy? We can rewrite the Virial

theorem, ignoring Urad.

Pc = C
M2

R4
(8)

The ideal gas law implies that

Tc = C
µmH

kρ

M2

R4
(9)

If we let R = (3M/4πρ)1/3 then:

Tc = C

(

4π

3

)4/3
µmH

k
M2/3ρ1/3 (10)

From radiative diffusion

L = −
64πσr2

κρ
T 3

dT

dr
(11)

Approximating dT/dr ∼ T/R, then:

L ∝
RT 4

κρ
(12)
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If we adopt the Kramers opacity κ = κ0ρT−3.5

L ∝
M5.53ρ0.166µ7.5

κ0

(13)

Since M is constant, and there is a low dependence on ρ (which is probably also close to

constant):

L(t)

L(0)
=

[

µ(t)

µ(0)

]7.5

(14)

The result is that as Hydrogen is converted into Helium, the Sun becomes more luminous.

Early on, it was 25% less luminous. The faint young Sun paradox is that the early Earth was

too cold for liquid water to exist. The most common explanation is that the greenhouse effect

kept the surface warmer (the Earth’s atmosphere was rich in CO2 early on). As the same

ages, it will get warmer. In about 1 billion years, predictions show the Oceans evaporating

in a runaway greenhouse effect.
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The Red Giant Phase

Now imagine that the central core of the star is depleted in Hydrogen, and that fusion is

taking place primarily in a shell surrounding the central core (either by the P-P chain or the

CNO cycle). What happens to the central core?

Let us consider the virial theorem for a shell. Now, we have a virial theorem similar to that

which we considered for clouds and cores with an internal and external pressure (see lecture

4 equations, section 2).

∫ Vc

0

PdV = PsVc +
1

3
α

GM2

c

Rc
(15)

Now assume an isothermal gas where P = ρkT/µmH . Dividing by the volume, we get

Ps =
3

4π

kT

µmH

Mc

R3
c

−
αG

4π

M2

c

R4
c

(16)

If we set PS = 0, we get a minimum radius:

R0 = α
µmH

3k

Mcµc

Tc
(17)

Below this radius, there is no stable configuration. However, if there is external pressure, we

can find a maximum value of Ps, by finding out where dPs/dRc = 0. At this point:

0 = −
9

4π

kT

µmH

MC

R4
c

+
αG

π

M2

c

R5
c

(18)

Giving the solution

R1 =
4αG

9R⋆

Mcµc

Tc

(19)

Thus, if R < R0, the core is unstable if the pressure was 0. If there is an external pressure,

the core is unstable if R < R1. It is stable for R > R1. At R1, there is a maximum in the

pressure where if the pressure is exceeded, the core will collapse. By substituting this back

into the equation for PS, we get

Ps,max(Mc) = C1

T 4

c

M4
c µ4

c

(20)
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The surrounding pressure is due to the weight of the envelope. We can estimate in by using

the equation of hydrostatic equilibrium (assuming Mc < M⋆):

dP

dm
=

∫ M⋆

0

Gm

4πr4
dm (21)

Since r < R, where R is the radius of the star, we get the inequality:

Penv >

∫ M⋆

0

Gm

4πR4
dm =

GM2

⋆

8πR4
⋆

(22)

Thus, the core is unstable if then

Ps,max(Mc) = C1

T 4

c

M2
c

µ4

c ≥
GM2

⋆

8πR4
⋆

(23)

Now, we assume can use the equation

Tc = C2

µenvmH

k

GM⋆

R⋆

(24)

giving the final relationship

Mc

M⋆

≤ C3

(

µenv

µc

)2

(25)

Schönberg and Chandrasekhar derived that C3 = 0.37.

What are µenv and µc? Let us assume that the envelope is dominated by Hydrogen, while

the core is dominated by Helium. The total value of µ is given by:

1

µ
=

1

µ(e−)
+

1

µ(ion)
≈

3 + 5x

4
(26)

This gives us µenv = 0.6 and µcore = 1.33
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The critical ratio is when the mass of the Helium approaches the size:

Mc

M⋆

≤ 0.37

(

0.6

1.33

)2

∼ 0.1 (27)

Thus, when 10% of the Hydrogen is converted into Helium, the star becomes unstable. At

this point, it enters the Red Giant phase.


