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FiG. 5.— Extinction map of the Filament L 1495 with a resolution of 0.9’ derived from deep NIR observations with Omega2000.
Contours are plotted in steps of Ay = 5 mag. We separate the filament into different subregions, which conform to Barnard’s Dark Objects
(Barnard et al.[1927). The boxes indicate the positions of the zoom-ins shown in Fig.[6]




Properties of Taurus Cores
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Cold Dark Clouds 11

Table 1: Properties of Dark Clouds, Clumps, and Cores

Clouds® Clumps® Cores®
Mass (Mg) 10°-10% 50-500 0.5-5
Size (pc) 2-15 0.3-3 0.03-0.2
Mean density (cm™3) 50-500 103-10% 10%-10°
Velocity extent (km s™1) 2-5 0.3-3 0.1-0.3
Crossing time (Myr) 2-4 ~ 1 0.5-1
Gas temperature (K) ~ 10 10-20 8-12
Examples Taurus, Oph, B213, L1709 L1544, L1498,

Musca B68

¢ Cloud masses and sizes from the extinction maps by Cambrésy (1999),
velocities and temperatures from individual cloud CO studies

®  Clump properties from Loren  (1989) (}3CO data) and
Williams, de Geus & Blitz (1994) (CO data)

¢ Core properties from Jijina, Myers & Adams (1999), Caselli et al. (2002a),
Motte, André & Neri (1998), and individual studies using NH3 and NoH™




Can Dense Cores be Supported by Thermal Pressure?

We begin by estimating the size of a thermally supported, cold (10 K), one solar mass
globule of gas. The equation for hydrostatic equilibrium is

dP M
i —PGT—Q (1)

or if we approximate dP/dr = (P, — Py)/R where P, is the central core pressure, P, is the
outer pressure and R is the core radius, then:

M
r
where we assume Py << P,, and then by applying the ideal gas law (P = c¢?p):

M kT
2 ~J ~J
Cs ™G R Umy (3)

Note, this is very similar to the virial equation. For a core with M = 1M; and 7' = 10K,
we find R = 0.15 pc. This is very similar to the radii of molecular cores in low mass stars.




Are Dense Cores Supported by Thermal Pressure Stable!?

Would such cores be stable? We can examine the critical radius for a thermally supported
core with an external pressure. We found from lecture 4 that this radius would be:

4 GM,

R > Rcr’it —_— E Cg (4)

For the assumed temperature and mass above, R > 0.04pc. Thus, the cores would be stable.
What about Jeans instabilities? The Jeans mass is given by (Lecture 3):

m; = poAy = G3/2p1/2 - (
0

el )3/2 py (5)
0
umyG

The resulting jeans mass would be around 4 My. Thus, we have found that cores are in the
regime that they could be considered to be stable condensations in hydrostatic equilibrium
where the pressure is generated with thermal pressure.




Solving for Hydrostaic
Equilibrium in an
Isothertmal Gas:

Bonnor-Ebert Spheres

and Singuar Isothermal

Spheres




The Spherical Core (Cow?)

We assume spherical symmetry. In this case, the term

VP = dP/dr

where r is the radial position, and

1 d do
2, L+ @ [ 200
v'e r2dr (T dr)
We write the gravitational force as

ds __ M)

dr r2

(7)

(8)

We now have three equations which describe our thermally supported gas ball. The equation

for hydrostatic equilibrium becomes




We now have three equations which describe our thermally supported gas ball. The equation
for hydrostatic equilibrium becomes

1 dP) __ds

p(r) dr —  dr ()

where the equation of state is the ideal gas law

P = pc? (10)

8

and the equation for the gravitational potential is:

Ld (ﬂ@) = 4nGp(r) (11)

r2 dr dr

We can combine the first two equations to find:

¢ dp(r) _  dé

p(r) dr dr (12)

dinp(r) _ _d (@) (13)




We can integrate the equation for the gravitational potential

L d (2@) — 4nGp(r)

r2dr \| dr
to get
"1 d d r
R (r'zd—f,) r’dr’ = /0 4w Gp(r')rdr’
where
M(r) = / 4 Gp(r')r"dr’
0
Giving us
d
7"2—¢ = GM(r)

dr

(14)

(15)

(16)

(17)




Solution for a Hydrostatic, Isothermal Core

Now we just need to combine:

7“2@ — GM(T‘), dIn p(’l") — _i (¢(T)> (18)

to get

(19)

and

= 4mr®p(r) (20)

By integrating these equations, we can solve for density
and mass as a function of radius for a given sound speed.




The Singular Isothermal Sphere

As a boundary condition, we must adopt a value for p(0).
If p(0) -> infinity, we get a singular isothermal sphere

Singular isothermal sphere

Numerical solutions: (limiting solution)
10-14 3 ' ] LN NS SN LB LR R LA LR L R
10—16_ -

E
Q
E 10—18 - -
S 2
i p(r) = =
107201 21 Gr?
10"22 T | MR | PP | e
101 102 103 104 105
r [AU]
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The Bonnor-Ebert Sphere

As a boundary condition, we must adopt a value for p(0).
If p(0) is finite, we get a Bonnor-Ebert sphere

Numerical solutions:
1x10-17 T T T T

8)(10—18— —

o)
X
<
o
I
|

4x10-18 - =

p(r) [9/cm?]

2x10718 - -

0 ! !

0 2000 4000 6000 8000 10000
r [AU]
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The Bonnor-Ebert Sphere

Plotted logarithmically

umariral enliifinne: (which we will usually
— do from now on)

10—14 ! | ! | ! AL | ! vor e

10—16_ —

107" Bonnor-Ebert Sphere

p(r) [g/cm?]

10—20 -

10_22 PRI | M| AR | e
101 102 103 104 103
r [AU]
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The Bonnor-Ebert Sphere

Numerical solutions:

Different starting po
a family of solutions

10-14
flat

10—16 —
=5
E
3)
E 10—18 —
= 2

10-20 IOCRC

p(r) =
R? + r?
10_22 il PRI | PP | T
101 102 1093 104 103
r [AU]
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The Bonnor-Ebert Sphere

Boundary condition:
Pressure at outer edge
= pressure of GMC

Numerical solutions:

Q-8 T

10-°F

10-10F

P [g/cm s?]

10-M"E

10712

10—13 L L e aaaal 1 i s aaaal 1 i o aaal

101 102 103 104 105
r [AU]
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The Bonnor-Ebert Sphere

Numerical solutions: Another boundary condition:
Mass of clump is given

Q2T

100

10—2_

M(r) [Msun]

1074 Must replace p. inner

BC with one of outer
BCs ]

10-6

101 102 103 104 103
r [AU]
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The Bonnor-Ebert Sphere

All solutions are scaled versions of each other!

1014

10-16

10-18

p(r) [g9/cm?]

10-20
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101 102 103 104 109
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Slide pirated from K. Dullemond




The Bonnor-Ebert Sphere

« Summary of BC problem:
—For inside-out integration the paramters are p; and r,,.

—However, the physical parameters are M and P,

* We need to reformulate the equations:
—Write everything dimensionless
—Consider the scaling symmetry of the solutions

Slide pirated from K. Dullemond




A dimensionless solution for
the Bonnor-Ebert Sphere

Let’s go back to:

dinp(r) d (@) (21)

dr dr \ c?

Let’s assume ¢(r = 0) = 0 and define

p(r) = pee=?0/e: (22)

resulting in

ld (72@) — 47erce—¢(r)/C§ (23)

r2dr dr




if we define

We arrive at the Lane-Emden equation

To solve this equation, we set up the following boundary conditions

and then we integrate outward in £.

4
e
1/2
65(47;(2;%) T
ii( 2du
£ dt dﬁ) —°

(24)

(25)

(26)

(27)

(28)




The Bonnor-Ebert Sphere

A dimensionless, scale-free formulation:

A direct relation between py/p. and &,

T09E
10‘15

1072

exp(—y)

103

(/po)

104

10-5

10-6

Remember:

p(r) = peexp (-

LELELIL | T T |

™ra
-

2 >
CS

i raal 1 1 o aaal

0.1

1.0

10.0 100.0 1000.0
§
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The Bonnor-Ebert Sphere

« We wish to find a recipe to find, for given M and P4,
the following:
—p. (central density of sphere)
—r, (outer radius of sphere)
—Hence: the full solution of the Bonnor-Ebert sphere

* Plan:
—Express M in a dimensionless mass ‘'m’
—Solve for p/p, (for given m)
(since p, follows from P, = p,Cs2 this gives us p;)
—Solve for &, (for given p./po)

(this gives us r,)
Slide pirated from K. Dullemond




Now we work on defining a dimensionless mass. We do this by considering the mass of
the sphere:

M = /0 ! 4mp(r)ridr (29)

now transform into our u and & using the transformations

1/2
p(r) = pe®0/E = pev, €= (47rgpc) r (30)
and get:
o2 3/2 péo )

M =4 2 o 1
7, ( 47er¢) | e (31)

We then plug in the Lane-Emden equation to get

€o du

e vEPdE = € — 32
/ d€ (32)

which gives the mass

c 3/2 odu
M = 4mp, ( - Gpc) e (33)




The Bonnor-Ebert Sphere

We now define the dimensionless mass as

Py*G¥*M

m

(34)

or for an outer boundary & = &:

-1/2
_ Pc 2 du
"o (47rp0) (5 df)go (35)

100: '§ 104 T T T T T T T
10—1,__ E I /
| 102 .
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N WU
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The Bonnor-Ebert Sphere

Dimensionless mass:
1.2- LBLENLEL LR R L] | \ARAAAAM ] LA R R | LA R L L | LA R R L | ' LU

1.0F .

O
(0¢]
T T I T T
|

dimensionless mass
®)
(0)]
I
|

0.4 -
0.2 —
0,0 da s aaud o aaaul N aaaaaal o aaaul roa g aaaaal SRR T
100 101 102 103 104 10° 106
Pe/Po

Recipe: Convert M in m (for given P,), find p./p, from figure,
obtain p., use dimless solutions to find r,, make BE sphere
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Stability of Bonnor-Ebert Spheres
« Many modes of instability
e Oneisif dP,/dr,>0
—Run-away collapse, or
—Run-away growth, followed by collapse
« Dimensionless equivalent: dm/d(p./p,) <O

S o
oo
T T T I T 1

dimensionless mass
o
(o)}
I
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Stability of Bonnor-Ebert Spheres

I\@wum density ratio =1/ 14.1
2x10-18

0 2000 4
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Critical Pressure

In lecture 3 we found a critical radius, where R > R,.;; for a stable cloud.

4 GM,
15 2

Rcrz't =

Using the equation derived from the Virial theorem

3 GM?
3p _a2pr.  2GMy
Ar R Py = 3c; M, 5 R,
we derive a critical external pressure
o
Py=315--2
G3 M3
For a Bonnor Ebert sphere:
Rerit = 0.41GA24°’
CS
and
Pcn‘g = 140 cg

G3M?

(36)

(37)

(38)

(39)

(40)




The Bonnor-Ebert Mass

O
N

1.2F == M = 1.18
1.0f
£ 0.8 mlc‘;
’ MBE = —7
?c) 0.6 P / G3/2
£

O
N

100 101 102 103 104 10% 106
Pe/Po

Ways to cause BE sphere to collapse:
 Increase external pressure until Mge<M

e Load matter onto BE sphere until M>Mgg
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The Bonnor-Ebert Mass

Now plotting the x-axis linear (only up to ps/po, =14.1)
and divide y-axis through BE mass:

Pe/Po

Hydrostatic clouds with large ps/p, must be very rare...
Slide pirated from K. Dullemond




B68: A real Bonner-Ebert Sphere in Nature??




B68: A real Bonnor-Ebert Sphere in Nature??
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C p Oph core D 7 um image

a Barnard 68 K band b L1544 1.2 mm continuum

<

1 arcmin |
Ay =ryHKEH-K) For optically thin emission: I, = 1,9 exp(-t;) + 19
Av=fNy Iy = lkup BATa)dl 7 = 03 Ny
N = (ryHK §=1) - E(H = K) I, = m <k,B,(Tg)> Ny Ni=—n [%]
Ny = I, [<mK,B,(Tg)>]-" oR T
6 r—rr '
F ‘ & i - T T r T T
st . T 8o} . : weE ‘ ]
L . © [ ° i
L Q B -
4t o 2 gol © 0.6 ° -
i o > . ] £ [
3¢ . S . & .
: . £ 400 . ] = 04p ° ]
2t *s 5 | . 1 i °
C % 5 I *% ] 02k ° ]
1 - o 20} . - <]
- Ak XAy & NH2—> Ny, F Sy« TdNH2 — NH, \ ] [ T X NHz" Ny, ° 1
6710 ® o 4 ;56'7'1'60 > ] A'é“"ﬂz 0.0t S ;.é.""‘w.., !
1 10 100 1 10 100
Radius (arcsec) Radius (arcsec) Radius (arcsec)

Bergin EA, Tafalla M. 2007.
Annu. Rev. Astron. Astrophys. 45:339-96

Alves et al 2001, Ward Thompson et al.. 1999, Bacman et al. 2000




The Dangers of Circularizing:
A Faux Bonnor-Ebert Sphere

Constant Density
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Summary

Dense cores have the radii, temperatures, and masses to
be thermally supported and stable.

We examine models of isothermal cores in hydrostatic
equilibrium:

singular isothermal sphere: infinite central density and
outer radius

Bonnor-Ebert sphere: finite central density and size,
confined by external pressure.

Bonnor-Ebert sphere may be unstable if external pressure
or mass is to high.

Actual cores have radial profiles similar to BE spheres,
but BE spheres are not a unique fit to the profiles.




