Lecture 7: The Collapse of

Cores and Infall
.

Herschel and Spitzer imaging of Orion Protostars




Review: Dense Cores in Hydrostatic Equilibrium

We begin by estimating the size of a thermally supported, cold (10 K), one solar mass
globule of gas. The equation for hydrostatic equilibrium is

dP M
i —PGT—Q (1)

or if we approximate dP/dr = (P, — Py)/R where P, is the central core pressure, P, is the
outer pressure and R is the core radius, then:

M
r
where we assume Py << P,, and then by applying the ideal gas law (P = c¢?p):

M kT
2 ~J ~J
Cs ™G R Umy (3)

Note, this is very similar to the virial equation. For a core with M = 1M; and 7' = 10K,
we find R = 0.15 pc. This is very similar to the radii of molecular cores in low mass stars.




The Singular Isothermal Sphere

As a boundary condition, we must adopt a value for p(0).
If p(0) -> infinity, we get a singular isothermal sphere

Numerical solutions:

Singular isothermal sphere
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The Bonnor-Ebert Sphere

Numerical solutions:
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B68: A real Bonnor-Ebert Sphere in Nature??
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Collapse




What Initiates Collapse?
Possibilities:

 Formation of core (cores are never stable)

e External pressure increase (shock or pressure
wave 1n turbulent medium)

e Mass accretes onto source
e Ambipolar Diffusion




Magnetic Support of Cores
(“Historical Diversion”)
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Ambipolar Diffusion




Charges in B-Fields

This animations illustrates charged particles frozen to the Earth‘s field




Collapse Initiated by Ambipolar

Diffusion
 Jons & electrons are stuck to magnetic field

* Neutrals are not stuck to magnetic fields

* Magnetic field 1s strong enough to resist collapse.
* Neutrals are pulled in by gravity.

* Jons & electrons remain stuck to field

e Relative to the contracting neutral gas, the magnetic
field, 1ons and electrons diffuse outward (hence
ambipolar), reducing magnetic flux to mass ratio.

e Eventually cloud becomes supercritical and collapses
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Timescale for Ambipolar Diffusion

Let’s consider a gas where the number density of ions is n;, where n; << n(Hz). The
collision rate with neutrals for a given ion is

Ry =n;<of(v)v> (1)

where v is the typical velocity difference between the particles, f(v) is a Maxwellian distri-
bution, o is the cross section for collisions between ions and neutrals and p/umpy gives the
density of neutrals.

The change in momentum per time (i.e. the acceleration) is then given by:

dP

E=pni<af(v)v>vp (2)

To simplify the derivation, Spitzer originally assumed a cylindrical geometry aligned with
the magnetic field. This gives a gravitational force of:

13
Taken from Hartmann




To simplify the derivation, Spitzer originally assumed a cylindrical geometry aligned with
the magnetic field. This gives a gravitational force of:

—V¢ =27RGp (3)

where R is the distance to the axis of the cylinder. We equate the force of gravity to the
drag force of the ions and we get:

pn; <of(v)v>wvp=2rRGp? (4)

or

B 2rRGp
n;<of(v)v>

Ub




Finally, we can define a timescale for the diffusion of the magnetic field as t,,, = R/vp
where:

;< of(v)v > n;
amb = 27rG',umH U3z

(6)

where < of(v)v >a 2 x 10 %e¢m3s~1. This timescale depends strongly on the ratio of ions
to neutrals in the cloud. We can write it approximately as:

by & 5 X 1012 (7)
nH,

Given estimates of n;/ny, = 107" (ng,/10*em™2) by (McKee 1989), this gives t,,, = 107
years. This is longers than the lifespan of molecular clouds. Measurements also show that
% > 1, suggesting that magnetic fields do not support clouds (or cores) against collapse.




Current Consensus: Clouds and Cores
are already Supercritical.

[ Survey results included in this plot:

| Heiles & Troland 2005: survey with 69 H | results

| Crutcher 1999: compilation of 27 OH results
Troland & Crutcher 2008: survey with 34 OH results
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Collapse Calculations




Imaging the free fall of a core with mass M and radius R. We from the virial theorem,
we showed last week for a thermally supported core:

G
2 8
&~ SN 8)

Now consider the typical free fall velocity for an infalling core. Let’s derive the velocity

of a parcel of gas on the outside of the gas which has fallen from R — R/2. The change in
potential energy is:

2mM
AU = GT (9)

where m is the density of the gas. Equating this to the kinetic energy, the infall velocity is

M
Vin = 2 GT ~ 2¢s (10)

Now consider the mass accretion rate. Define t;, = R/c,. Then the mass accretion rate is
given by:

dM M Mc,
Taken from Hartmann dt  ti, R

(11)

Qa2




You can derive this in another way. Take the Jeans mass:

and divide it by the free fall time (Schmeja & Klessen 2004)
b — 3m
1=\ 32Gp

to get

dMNmJ_ Qc_ﬁ
ar ~t;; V3 G

(12)

(13)

(14)




Spherically symmetric free falling cloud

Free fall velocity:

\/2GM(r)
Vi =

r
If stellar mass dominates: p = \/2GM*
r
Continuity equation: Stationary
) free-fall )
do 1 d(r pv) collapse (r’pv)
+ 2 = O —_ O
ot r or r
p(r) cr™"?
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Inside-out collapse of metastable sphere

Y

r

No support again gravity
here, so the next mass
shell falls toward star

!

r

Y

Y

Suppose inner region is
converted into a star:

r

The ‘no support’-signal
travels outward with sound
speed (“expansion wave”)

o~

r

(warning: strongly exaggerated features)
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Hydrodynamical equations

Continuity equation:

dp 1 d(r*pv)
— + > —
ot r or

Comoving frame momentum equation:

oV oV 1 P GM(r)
—+V— = — >
ot or p or r

0

M(r) = for4.7t r' o(r')dr

Equation of state:

kT

umy

_ 2 2 _
P=pc; . =

= Cconst.
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Inside-out collapse model of Shu (1977)

* The analytic model:
—Starts from singular isothermal sphere
—Models collapse from inside-out
—Applies the “trick’ of self-similarity

* Major drawback:

—Singular isothermal sphere is unstable and therefore
unphysical as an initial condition

* Nevertheless very popular because:
—Only existing analytic model for collapse
—Demonstrates much of the physics
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Inside-out collapse model of Shu (1977)

Expansion wave moves outward at sound speed.
So a dimensionless coordinate for self-similarity is:

X =—
c.t
If there exists a self-similar solution, then it must be of
the form:
3

Oc(x)2 M(r.f) = c:'t
4rGt G

v(r,t) = c u(x)

m(x)

p(l",t) =

Now solve the equations for a(x), m(x) and u(x)
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Inside-out collapse model of Shu (1977)

Solution requires one numerical integral. Shu gives a table.

An approximate (but very accurate) ‘solution’ is:

1 2
1.43x°"? X

8

a(x) = (g0 + h(x)"?)"
u(x) = (h(x)5/9 3 25/9)9/10

m(x)=1.025x>+0.975+0.075x(1 - x)

For any t this can then be converted into the real solution
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Inside-out collapse model of Shu (1977)
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Inside-out collapse model of Shu (1977)
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Inside-out collapse model of Shu (1977)
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Inside-out collapse model of Shu (1977)
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Inside-out collapse model of Shu (1977)

Deep down in free-fall region (r << ct):

3/2
c 1 1 2GM. (1)
r,t)=—3 v(r,t) = \/
P = 796G Vi r
3 3
Accretion rate is constant: M = €My _ ().9756_s
G G

Stellar mass grows linear in time

Slide pirated from K. Dullemond




The Collapse

o)
of a Bonnor-
Ebert Sphere
LT T = Foster &
. N — 00979 Chevalier 1993
~ 6 ,', \\ .......... —0.0050
¢ P -~ -0.0002 |
2 [ - 0.0000 T = free fall time for pc
0 = = V = V/C32

-8 -6 -4 -2 0 2
Ioglo E (47erc>1/2
= T

Fi1G. 1.—Radial profiles of the velocity, density, and enclosed mass over
radius for the standard case are presented, at several times prior to core
formation. The profiles shown are for a run with 200 zones. The horizontal line
in plot a represents the Larson-Penston solution at core formation. A 250 zone
run is identical to the 200 zone case, for the range shown in the figure.
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F1G. 3.—The mass accretion rate at four different radii is shown as a func-
tion of time. The quantity 1 is calculated as the product of £2Dv. & ~ 0.3 is the
solid line, ¢ ~ 1.0 is the dotted line, £ ~ 3.0 the dashed line, and & ~ 10 the
dot-dash line. The horizontal line is m = 1.45, corresponding to the Shu solu-
tion A = 2.2 case. Fig. 3a is for the standard run and Figs. 3b, 3¢, and 3d are for
runs with £, = 20, 40, and 100, respectively. The ¢ = 0.3 line is missing from
Fig. 3d because it is less than £ _. for this case.

T = free fall time at
central density




Self Gravitating Sheets

.




No. 1, 1994 PROTOSTELLAR COLLAPSE L51
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FiG. 1.—Velocity fields and density contours separated by factors of 10'/?) at selected times for the collapse model described in the text: (a)t = 2.7t,; (b)t = 6.0t,(;
(c) t = 6.5t,; (d) t = 7.0t,,. The left-hand border is the symmetry axis; the bottom border is z = 0. The entire cloud is shown (radius = 5400 AU). The r and 6 grids are
nonuniform and resolve the cloud outside 7 AU (not visible here). The highest (central) density contours denote a molecular hydrogen number density of 3.16 x 10°
cm ™ in all except (a), where the highest contour is 3.16 x 10% cm 3. Velocity vectors are plotted for only a small fraction of the 50 radial x 22 angular grid points.
The lengths of the velocity vectors are proportional to the speeds, with the length of the arrow in the upper right-hand corner denoting the sound speed = 0.2kms ™.

Hartmann, Boss, Calvet & Whitney 1994 ApJ 430, L49
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F1G. 2.—Mass accretion rate of the central protostar (sink cell of radius
of 7 AU) as a function of time.
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Evidence for Collapse and Infall




Flux

Line profile of collapsing cloud

Optically thin emission is

symmetric
Blue, i.e. Red, ie. f
toward the away from
observer observer
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Line profile of collapsing cloud

But absorption only on
observer’s side (i.e. on

redshifted side)
Flux

Blue, i.e. Red ie. M f

toward the away from

observer observer DU TSN SN * SN Y TS S Y S—_—"
Example: e
Observations of B335 T(K)
cloud.
Zhou et al. (1993)
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Infall in starless
cores:

Lee, Myers & Plume
2004 ApJ 153,523

Clear infall signature
for 18 of 94 starless
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Infall in protostellar cores:
Lee, Myers & Plume 2004 ApJ 153, 523

Clear infall signature in 15 of 47 sources
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lines are
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Infall Speeds

Infall Speeds 0.04 - 0.07 kms-!
Times of a few million years
Longer than free fall time

Shorter than ambipolar diffusion time




P Cygni profile formation

P-Cygni
- G\Bm profiles for

4 - —eh o - winds around

T "+ % evolved stars
eorption

LA

1

Vane

vm 0 -v.m
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Inverse P-Cygni Profiles

Cold infalling gas generates

| / absorption line.

= b

Continuum emissiom from
hotter inner core.
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Summary

* Mechanisms for initiating collapse in hydrostatically
supported cores
—Ambipolar Diffusion

—Pressure wave compresses a critical Bonnor-Ebert sphere
(increases Qc/Qo to unstable regime)

—Mass accretion onto a Bonnor-Ebert sphere
* Solution for infall

—Infall 1n a 1sothermal sphere

—Solutions for collapse of sheet and Bonnor-Ebert sphere
e Evidence for infall

—Redshifted self-absorption
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—Inverse P-Cygni




